Odour aversion after olfactory conditioning of the sting extension reflex in honeybees.

نویسندگان

  • Julie Carcaud
  • Edith Roussel
  • Martin Giurfa
  • Jean-Christophe Sandoz
چکیده

In Pavlovian conditioning, an originally neutral stimulus (conditioned stimulus or CS) gains control over an animal's reflex after its association with a biologically relevant stimulus (unconditioned stimulus or US). As a consequence, a conditioned response is emitted by the animal upon further CS presentations. In such a situation, the subject exhibits a reflex response, so that whether the CS thereby acquires a positive or a negative value for the animal is difficult to assess. In honeybees, Apis mellifera, an odour (CS) can be associated either with sucrose solution (US) in the appetitive conditioning of the proboscis extension reflex (PER), or with an electric shock (US) in the aversive conditioning of the sting extension reflex (SER). The term ;aversive' may not apply to the latter as bees do not suppress SER as a consequence of learning but, on the contrary, start emitting SER to the CS. To determine whether the CS acquires a positive or a negative value in these conditioning forms, we compared the orientation behaviour of freely walking honeybees in an olfactory-cued Y-maze after training them with an odour-sucrose association (PER conditioning) or an odour-shock association (SER conditioning). We show that the same odours can acquire either a positive value when associated to sucrose, or a negative value when associated to an electric shock, as bees respectively approach or avoid the CS in the Y-maze. Importantly, these results clearly establish the aversive nature of SER conditioning in honeybees.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Searching for Learning-Dependent Changes in the Antennal Lobe: Simultaneous Recording of Neural Activity and Aversive Olfactory Learning in Honeybees

Plasticity in the honeybee brain has been studied using the appetitive olfactory conditioning of the proboscis extension reflex, in which a bee learns the association between an odor and a sucrose reward. In this framework, coupling behavioral measurements of proboscis extension and invasive recordings of neural activity has been difficult because proboscis movements usually introduce brain mov...

متن کامل

Olfactory conditioning of the sting extension reflex in honeybees: Memory dependence on trial number, interstimulus interval, intertrial interval, and protein synthesis.

Harnessed bees learn to associate an odorant with an electric shock so that afterward the odorant alone elicits the sting extension response (SER). We studied the dependency of retention on interstimulus interval (ISI), intertrial interval (ITI), and number of conditioning trials in the framework of olfactory SER conditioning. Forward ISIs (conditioned stimulus [CS] before unconditioned stimulu...

متن کامل

Honeybees (Apis mellifera) learn to discriminate the smell of organic compounds from their respective deuterated isotopomers.

The understanding of physiological and molecular processes underlying the sense of smell has made considerable progress during the past three decades, revealing the cascade of molecular steps that lead to the activation of olfactory receptor (OR) neurons. However, the mode of primary interaction of odorant molecules with the OR proteins within the sensory cells is still enigmatic. Two different...

متن کامل

Honeybees Learn Odour Mixtures via a Selection of Key Odorants

BACKGROUND The honeybee has to detect, process and learn numerous complex odours from her natural environment on a daily basis. Most of these odours are floral scents, which are mixtures of dozens of different odorants. To date, it is still unclear how the bee brain unravels the complex information contained in scent mixtures. METHODOLOGY/PRINCIPAL FINDINGS This study investigates learning of...

متن کامل

Olfactory learning by means of trophallaxis in Apis mellifera.

Early reports indicate that trophallaxis, i.e. the exchange of liquid food by mouth, may allow honeybees to assign nectar odours with predictive values to anticipate biological meaningful reward stimuli. Nevertheless, this type of learning has not been addressed directly. In the present study, pairs of animals were isolated to induce trophallaxis under controlled conditions and, afterwards, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 212 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2009